Oxy-Fuel FAQs
Why do people use oxygen for combustion when air is free?
How do I choose the right burner technology if my melting furnace is a bottleneck or I want to increase production?
Your furnace may have heat recovery or conventional cold air-fuel burners. Air Products recognizes that no two furnaces are alike, and that the best solution will match your furnace’s characteristics and situation.
When your furnace was first built, oxy-fuel may not have been appropriate, but now that you need a production increase or your furnace has become a bottleneck, an optimized oxy-fuel retrofit can often be a very cost-effective solution.
Following an assessment of your operation, Air Products’ applications engineers can combine our experience, modeling capabilities and wide range of proven burner technologies to develop a customized oxy-fuel solution for your operation—often increasing production by more than 30% with a payback of as little as 3–6 months. And with our latest patented burner, even increasing yields.
How can I lower the carbon-monoxide levels in my steelmaking furnace off-gas?
It’s a great idea to measure carbon monoxide (CO) and other combustion products such as carbon dioxide (CO2), oxygen (O2) and hydrogen (H2) in your off-gas system. High CO levels in your ductwork indicate incomplete combustion in your furnace, which means you’re losing usable energy!
Usually, introducing dilution air to the ductwork will complete combustion when the CO combines with the oxygen in the air to form CO2. However, this exothermic reaction (post-combustion) may raise temperatures in the ductwork and off-gas handling system, which can lead to shorter life or higher maintenance costs.
Improperly calibrated flow controls, poorly mixed fuel and oxygen/air in the furnace, or other factors may cause incomplete combustion. Thankfully, by better utilizing oxygen in your furnace, you can use that lost energy to improve efficiencies and production rates and reduce emissions.